A Hands-on Workshop on Designing LLM-Powered
Context-Aware Behavior for Companion Robots

Eshtiak Ahmed
Gameful Futures Lab, Research
Center of Gameful Realities, Faculty
of Information Technology and
Communication Sciences
Tampere University
Tampere, Finland
eshtiak.ahmed@tuni.fi

Linas Kristupas Gabrielaitis
Gameful Futures Lab, Research
Center of Gameful Realities, Faculty
of Information Technology and
Communication Sciences
Tampere University
Tampere, Finland
linas.gabrielaitis@tuni.fi

Abstract

As robots increasingly enter social and domestic environments,
their ability to generate context-aware and expressive behaviors
becomes essential for meaningful and believable human-robot in-
teraction. Traditional behavior generation often relies on static
rules or scripted routines, limiting adaptability and nuance. In this
workshop, we present a novel system that leverages Large Lan-
guage Models (LLMs) to generate dynamic, embodied responses
for robots. Our system integrates a defined robot persona, an affor-
dance profile based on physical capabilities, and a response mapping
framework that converts conversational inputs into sequences of
expressive movement markers. Participants will engage in a hands-
on experience with this system, beginning with an introduction to
behavior generation in robotics and a live demonstration. Working
in small groups, they will design their own LLM prompts and re-
sponse scenarios for daily life interactions, implement them using
the framework, and test the results directly on a quadruped robot,
Spot from Boston Dynamics. The workshop drives participants
and practitioners to critically reflect on expressive Al and robot
interaction design.
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+ Human-centered computing — HCI design and evaluation
methods.

Keywords
Companion Robots, Robot Behavior, Large Language Models (LLMs)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Mindtrek °25, Tampere, Finland

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1512-9/25/10

https://doi.org/10.1145/3757980.3758014

432

Bakhtawar Khan
Gameful Futures Lab, Research
Center of Gameful Realities, Faculty
of Information Technology and
Communication Sciences
Tampere University
Tampere, Finland
bakhtawar.khan@tuni.fi

Juho Hamari
Gamification Group, Faculty of
Information Technology and
Communication Sciences
Tampere University
Tampere, Finland
juho.hamari@tuni.fi

Jiangnan Xu
Gameful Futures Lab, Research
Center of Gameful Realities, Faculty
of Information Technology and
Communication Sciences
Tampere University
Tampere, Finland
jlangnan.xu@tuni.fi

Oguz ‘Oz’ Buruk
Gameful Futures Lab, Research
Center of Gameful Realities, Faculty
of Information Technology and
Communication Sciences
Tampere University
Tampere, Finland
oguz.buruk@tuni.fi

ACM Reference Format:

Eshtiak Ahmed, Bakhtawar Khan, Jiangnan Xu, Linas Kristupas Gabrielaitis,
Juho Hamari, and Oguz ‘Oz’ Buruk. 2025. A Hands-on Workshop on De-
signing LLM-Powered Context-Aware Behavior for Companion Robots. In
28th International Academic Mindtrek (Mindtrek °25), October 07-10, 2025,
Tampere, Finland. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3757980.3758014

1 Introduction and Background

Robots have become an integral part of modern life, transitioning
from industrial applications to more personalized roles in homes,
healthcare, education, and entertainment [2]. They are no longer
limited to repetitive tasks but are evolving to engage with humans
in increasingly sophisticated ways. In the current landscape of
robots alongside humans, their importance lies in their ability to
assist, complement, and augment human capabilities [11]. How-
ever, their ability to interpret and respond to human interventions,
engage in meaningful interactions, and adapt to different social
contexts has positioned them to potentially become companions to
humans [5, 10]. As robots develop more advanced communication
and behavioral capabilities, they are not just tools but entities that
might have the ability to create meaningful agency with humans
in daily life scenarios. One way to create and express agency is
to respond contextually to human interaction cues, making the
response meaningful to humans [8, 13].

Early approaches to robot response generation, especially in so-
cial contexts, often rely on pre-programmed scripts or limited sets
of rules, which restrict adaptability and fail to capture the complex-
ity of real-time, dynamic human-robot interactions [4, 9, 12, 15].
Development in natural language processing paved the way for
leveraging voice-based interaction with robots, which allowed for
the creation of voice-based feedback mechanisms on robots [18].
However, the process stayed far from dynamic due to the shortcom-
ings of natural language generation from the robot’s perspective.
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The introduction of Large Language Models (LLMs) addresses a
lot of these shortcomings, especially because it provides a more
dynamic, while still being controllable and predictable, depending
on how it is configured [1]. Also, Artificial Intelligence (AI), being
the driving force of LLMs, makes them more adaptive and situated
in diverse contexts.

Recent advances in Large Language Models (LLMs), such as
GPT-3 and GPT-4 [1], have opened new possibilities for robotic
interactions. LLMs have demonstrated strong capabilities in contex-
tual understanding, dialogue generation, and zero-shot reasoning,
making them promising tools for generating robot responses from
natural language input [3, 14]. In robotics, LLMs have been used
to interpret instructions, plan high-level actions, and even gen-
erate code to control robotic systems [19, 21]. For example, the
Code-as-Policies (CaP) framework leverages language models to
output executable robot code from user commands, allowing for
flexible and composable robot behavior [16]. More recently, LLMs
have also been explored for embodied language understanding,
where the model integrates sensory data and physical actions with
conversational input [20].

Keeping all these factors in mind, we have developed a system
that enables a quadruped robot, Boston Dynamics’ Spot [7], to re-
spond to human voice inputs with expressive, dog-like physical
behaviors. By integrating voice recognition, large language mod-
els (LLMs), and a structured response mapping framework, the
robot interprets conversational inputs and generates sequences of
behavior markers aligned with its physical capabilities. Through
this proposed workshop, we aim to introduce participants to this
novel framework, encourage hands-on experimentation with de-
signing LLM prompt structures and embodied responses, and fa-
cilitate creative exploration of how language-based interactions
can be transformed into meaningful robotic behaviors. Participants
will engage in collaborative design exercises, contribute their own
interpretations of daily life scenarios with robots, and test the ex-
pressive capacity of the robot using their own custom LLM prompts.
Through this, we seek to gain insights into the challenges and op-
portunities of designing context-aware, embodied interactions with
LLM-driven robots.

2 AwaR(e)obot: LLM-Powered System for
Behavioral Response Generation

The system comprises three main components: Human Interface,
LLM Module, and Robot Execution Layer. Fig. 1 shows a high-level
design of the system.

2.1 Human Interface

The interaction begins with the human user providing voice input,
which serves as the primary modality for initiating communication
with the system. This input can vary widely in form and intent,
ranging from explicit commands, such as “follow me”, “sit down”,
or “walk ahead”, to more expressive and emotionally rich dialogue,
like “I feel tired today” or “this place feels a bit eerie”. By accommo-
dating this full spectrum of utterances, the system moves beyond
traditional command-and-control paradigms and instead embraces
a more conversational model of interaction. Supporting both di-
rective and expressive speech opens up avenues for more nuanced
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human-robot relationships. Once the voice is detected, it is tran-
scribed into text using a speech-to-text module and immediately
fed to the LLM module. The length of the voice input can be set
either to 1) listen until the human keeps talking, allowing longer
and more complex dialogs, or 2) listen for a finite amount of time,
allowing for shorter interactions.

2.2 LLM Module

The core of the system is the Large Language Model (LLM), which
acts as a bridge between the natural language and the robot exe-
cution layer. The primary aim of this module is to take the voice
input as text, create a custom LLM prompt including this voice
input, and feed it to LLM, and then generate response markers as
output. It also provides detailed reasoning for the response markers
it produces.

2.2.1 Input Specifications. The system’s input to the Large Lan-
guage Model (LLM) consists of three structured components: the
robot’s persona, its affordance profile, and a response mapping
framework. The robot persona serves as a foundational marker that
guides the tone, style, and intent of the robot’s responses, shaped
by its type and appearance (e.g., quadruped vs. humanoid). The
affordance profile provides a clearly defined list of the robot’s phys-
ical capabilities and limitations, ensuring the LLM generates only
realistic and executable behaviors grounded in the robot’s embod-
ied form. Finally, the response mapping framework includes a set
of movement markers, generation rules, and output formatting
constraints that ensure coherence and believability.

2.2.2  Output Generation. The LLM produces two complementary
outputs: a sequence of behavioral markers and a short reasoning
text. The behavioral markers are structured codes representing the
robot’s non-verbal physical actions, formatted as timed movement
instructions (e.g., “f,1.0” to indicate movement ’f* for 1 second).
These markers are drawn from the predefined vocabulary in the
response mapping framework and translate directly into param-
eterized movement routines in the robot’s behavior engine. Ac-
companying this, the reasoning text provides a natural language
explanation of the LLM’s logic, interpreting the user’s tone and
speech content, and justifying the selection of specific behaviors.

2.3 Robot Execution Layer

The Robot Execution Layer serves as the final stage in the system
pipeline and is responsible for translating the high-level response
markers generated by the LLM into tangible, physical movements
performed by the robot. Once a sequence of behavioral markers is
produced as a python list, they are processed sequentially, using an
iterative loop to traverse each marker in the list. As each marker is
encountered, it is passed through a mapping function that links it
to a corresponding routine in the robot’s movement library. These
routines consist of predefined movement primitives such as “walk
forward”, “move backward”, “go belly up”, or “strafe left”, etc., that
are natively supported by the robot’s hardware capabilities. This
marker-to-movement translation operates via a lookup mechanism
in a python method library that ensures every behavioral marker
is matched to a physically feasible and safe motion routine.
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Figure 1: System design including components.

2.4 Interaction Loop

Once the robot completes executing its full sequence of behavioral
responses mapped from the user’s prior voice input, it transitions
back into a receptive state. To signal this shift and ask the user for
the next input, the robot emits a distinct sound marker, such as a
short chime or mechanical tone, signifying that the robot is now
actively listening and ready for further interaction.

2.4.1 System Generalizability. One of the deeper implications of
this work lies in its potential to serve as a generalized framework
for robot behavior generation. The modular design, consisting of a
voice-to-text layer, LLM-based semantic interpretation, behavior
marker generation, and robot execution mapping, can be adapted
across robotic platforms with different hardware specifications. By
abstracting robot actions into semantic markers (e.g., "greet for-
mally," "look playful") before mapping them to platform-specific
movement primitives, the framework offers a flexible pipeline that
separates social logic from physical implementation. This abstrac-
tion enables scalability and portability, provided that each target
robot has an associated library of motion mappings that correspond
to its specific embodiment. Robots like Spot, a quadruped with no
facial expressions, speech, or arms, rely solely on locomotion and
posture, whereas humanoid robots might convey intent through
gestures, gaze, or spoken language [6, 17]. This disparity requires
tailored prompt structures, marker vocabularies, and control logic
for each robot type.
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3 Workshop Objectives and Structure

The primary goal of this workshop is to offer participants hands-
on experience in designing expressive and context-aware robotic
behaviors using large language models (LLMs), by leveraging the
AwaR(e)obot system.

3.1 Key Themes and Objectives

The workshop and its activities will touch upon and go deeper into
the following key themes.

o Embodied Interaction Design: Exploring how physical ro-
bot behavior can be designed to match contextual and mean-
ingful cues from human input.

o LLMs as Behavior Generators: Understanding the role of
large language models in generating not only text but also
structured semantic interpretations that can map to physical
actions.

e Robot Expressivity and Movement Mapping: Investigat-
ing how robot affordances such as posture, locomotion, and
motion sequences can be utilized creatively to simulate ex-
pressivity, especially in robots lacking humanoid features.

e Prompt Engineering for Robots: Training participants to
craft effective LLM prompts that encode context, scenario,
character, and interaction goals, enabling more nuanced ro-
bot behavior generation.
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e Human-Centered Robotics: Emphasizing the importance
of user experience, empathy, and perceived agency when
designing robots that interact with humans in shared envi-
ronments.

3.2 Workshop Structure

This full-day workshop is designed to introduce participants to a
novel framework for generating expressive robot behaviors using
large language models (LLMs). Through a combination of brain-
storming, hands-on activities, and group-based explorations, par-
ticipants will learn how to craft context-aware robotic expressions,
develop their own interaction scenarios, and evaluate each other’s
creations. The workshop day is structured to balance learning, cre-
ativity, and collaborative design activities. The workshop will follow
the following overall structure:

e Introduction to the Workshop (09:30-10:15): The day
begins with an overview of the workshop’s aims, context, and
structure. We introduce participants to the broader themes
of expressive robotics, embodied interaction, and the role of
LLMs in enabling context-aware behaviors in robots.

o Icebreaker and Getting to Know Each Other (10:15-10:45):

To build a collaborative and open atmosphere, we engage
participants in interactive icebreaker activities. These will
help attendees get acquainted, understand each other’s back-
grounds, and feel comfortable exchanging ideas throughout
the day.

o Coffee Break (10:45-11:00): A short break with refresh-
ments.

o System Walkthrough and Demo (11:00-12:00): Partici-
pants are introduced to the key components of the frame-
work: robot persona, affordance mapping, LLM prompt struc-
ture, behavioral marker system, and execution pipeline. A
live demo with the Boston Dynamics Spot robot will show
how the system responds to voice inputs and translates them
into expressive physical behavior.

e Lunch Break (12:00-13:00)

e Hands-On Group Activity for Designing Robot Expres-
sions (13:00-15:30): Participants are divided into small
groups and guided through the process of creating their
own expressive robot interactions. Each group will:

— Choose a real-world daily interaction scenario (e.g., react-
ing to compliments, expressing curiosity, etc.)

- Define a robot persona and map its affordances

— Design a LLM prompt structure and generate 4-5 expres-
sive behavior sequences using the framework

o Coffee Break (15:30-15:45): A short break with refresh-
ments.

o Presentation and Group Evaluations (15:45-16:30): Each
group presents their scenario, LLM prompt, and resulting
robot behavior. Live demonstrations are run, and peer evalu-
ation is conducted based on expressiveness, contextual rele-
vance, and social readability of the robot’s responses.

e Closing Discussion and Reflection (16:30-17:00): We
wrap up with a group reflection, discussing insights, chal-
lenges, and ideas for further development. Participants will
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be invited to contribute to future research directions or adapt
the framework for their own creative or academic projects.

4 Intended Outcomes

This workshop is designed to yield both educational and research-
related outcomes. On the educational side, participants will leave
with a practical understanding of how to design and prototype
embodied robot behaviors using LLMs. On the research side, we aim
to generate a rich collection of interaction scenarios, LLM prompt
templates, and robot behavior sequences that provide insights into
how humans interpret and design robotic expressivity. On top of
this, we aim to gather valuable feedback from the participants on
the overall usability of the system, including what worked well,
what could be improved, and how the system can be extended
for more diverse use in different contexts. The following specific
outcomes are anticipated:

o A portfolio of user-designed interaction scenarios with cor-
responding LLM prompts and movement mappings.

e Recorded demonstrations of robot behaviors responding to
user-generated LLM prompts.

o Qualitative feedback from participants on the design process,
ease of use, and creative potential of the system.

o Reflections and peer evaluations that help surface design
patterns, misunderstandings, or opportunities in the frame-
work.

Additionally, we will also gather observational data from facili-
tators to understand how users engage with the system, how they
iterate designs, and where intervention or guidance is most fre-
quently required. This workshop is part of an ongoing research
project that explores how generative Al tools can enhance human-
robot interaction by enabling robots to behave in socially intelligible
and emotionally resonant ways. Moving forward, we aim to develop
an open-source toolkit based on the framework introduced in this
workshop, including LLM prompt libraries, behavior templates, and
customization tools. Additionally, we will use the collected data to
publish a peer-reviewed research paper on the participatory design
of robot behavior using LLMs.

5 Call for Participants

We invite researchers, designers, and creative practitioners inter-
ested in human-robot interaction, embodied Al, and expressive
robotics to participate in our hands-on workshop. This session will
explore how large language models (LLMs) can be used to generate
dynamic, context-aware robot behaviors through an interactive
design framework. Participants will work in small teams to design
their own LLM prompts and movement sequences for a quadruped
robot, experience the results in real-time, and engage in peer feed-
back and reflection. The workshop is open to participants from
various backgrounds, including HRI, interaction design, robotics,
Al, and digital media. No extensive technical expertise is required,
but familiarity with basic interaction or AI concepts will be helpful.
We aim to create an inclusive, collaborative environment and wel-
come up to 15 participants to ensure meaningful engagement and
feedback.
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